Cloth2Body: Generating 3D Human Body Mesh from 2D Clothing

The Hong Kong University of Science and Technology (Guangzhou)
ZMO AI Inc.
Technical University of Munich
National University of Singapore
ICCV 2023

Video Demo of Our Work

Abstract

In this paper, we define and study a new Cloth2Body problem which has a goal of generating 3d human body meshes from a 2D clothing image. Unlike the existing human mesh recovery problem, Cloth2Body needs to address new and emerging challenges raised by the partial observation of the input and the high diversity of the output. Indeed, there are three specific challenges. First, how to locate and pose human bodies into the clothes. Second, how to effectively estimate body shapes out of various clothing types. Finally, how to generate diverse and plausible results from a 2D clothing image. To this end, we propose an end-to-end framework that can accurately estimate 3D body mesh parameterized by pose and shape from a 2D clothing image. Along this line, we first utilize Kinematics-aware Pose Estimation to estimate body pose parameters. 3D skeleton is employed as a proxy followed by an inverse kinematics module to boost the estimation accuracy. We additionally design an adaptive depth trick to align the re-projected 3D mesh better with 2D clothing image by disentangling the effects of object size and camera extrinsic. Next, we propose Physics-informed Shape Estimation to estimate body shape parameters. 3D shape parameters are predicted based on partial body measurements estimated from RGB image, which not only improves pixel-wise human-cloth alignment, but also enables flexible user editing. Finally, we design Evolution based pose generation method, a skeleton transplanting method inspired by genetic algorithms to generate diverse reasonable poses during inference. As shown by experimental results on both synthetic and real-world data, the proposed framework achieves state-of-the-art performance and can effectively recover natural and diverse 3D body meshes from 2D images that align well with clothing.

BibTeX

@article{dai2023cloth2body,
        title = {Cloth2Body: Generating 3D Human Body Mesh from 2D Clothing},
        year = {2023}
      }